Optical Materials 37 (2014) 229-234

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Polarized spectral properties of Sm³⁺:LiLuF₄ crystal for visible laser application

G.Q. Wang^{a,b}, X.H. Gong^a, Y.F. Lin^a, Y.J. Chen^a, J.H. Huang^a, Z.D. Luo^a, Y.D. Huang^{a,*}

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ^b University of Chinese Academy of Sciences, Beijing 100039, China

ARTICLE INFO

Article history: Received 28 February 2014 Received in revised form 20 May 2014 Accepted 30 May 2014 Available online 18 June 2014

Keywords: Sm³⁺:LiLuF₄ crystal Polarized spectral property Visible laser application

1. Introduction

With the development of GaN laser diodes (GLD) in near ultraviolet to blue region, Compact all-solid state visible laser pumped by GLD has attracted many attentions for a variety of applications, such as color projection, high density optical data storage, laser printing, stereo lithography, argon-laser replacement, underwater communications, medicine, and photodynamic therapy.

GLD pumped solid-state visible lasers have been realized in recent years [1–4]. Among trivalent RE ions, the Sm^{3+} is one of the most interesting active ions for the visible lasers [5,6], which have been realized in Sm^{3+} -doped TbF₃ and LiTbF₄ crystals and silica glass fiber [7–9]. There are also several reports on Sm^{3+} -doped single crystals with potential for visible laser emission [10–14].

LiLuF₄ is isostructural with the uniaxial LiYF₄ crystal [15]. In the crystal, Lu^{3+} ions can be substituted by other trivalent rare-earth ions without charge compensation and lattice distortion. Like the LiYF₄, its negative thermal dependence of refractive index leads to weak overall thermal lensing and it also benefits from a closer match in its thermal expansion coefficient and conductivity along each of the crystal axes [16]. On the other hand, the LiLuF₄ grows congruently whereas the LiYF₄ grows incongruently, which means that the LiLuF₄ can be grown more easily because it does not need excess LiF, as in the case of LiYF₄, which could always create small inclusions in the crystal and reduce its optical quality. Therefore,

ABSTRACT

A Sm³⁺-doped LiLuF₄ single crystal was grown by the vertical Bridgman–Stockbarge technique. Polarized absorption spectra, polarized fluorescence spectra, and fluorescence lifetime of the Sm³⁺:LiLuF₄ crystal were recorded at room temperature. Based on the Judd–Ofelt theory, spectral parameters of the Sm³⁺: LiLuF₄ crystal were calculated. Emission cross sections for the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2, 9/2, and 11/2) transitions with special interest for visible laser application were obtained by the Füchtbauer–Ladenburg formula. The results indicate that the Sm³⁺:LiLuF₄ crystal may be a potential laser gain medium operating in visible region pumped by diode lasers around 401 nm.

© 2014 Elsevier B.V. All rights reserved.

laser operations have been achieved in Pr^{3+} , Nd^{3+} , Tm^{3+} , Ho^{3+} , and Yb^{3+} -doped LiLuF₄ crystals [17–21].

In this work, a Sm³⁺-doped LiLuF₄ crystal is grown by the vertical Bridgman–Stockbarge technique. Room temperature polarized absorption and emission spectra are measured and analyzed in detail. Room temperature fluorescence decay curve of the ${}^{4}G_{5/2}$ multiplet of Sm³⁺ ions, which is the upper level of visible laser operation, is also measured. Then, the emission cross sections for the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm³⁺ ions, which are the main channels for visible lasers, are obtained by the Füchtbauer–Ladenburg (F–L) formula.

2. Experimental procedure

A single crystal Sm^{3+} :LiLuF₄ was grown by the vertical Bridgman–Stockbarge technique under Ar atmosphere. The concentration of Sm^{3+} ions in the crystal was measured to be 2.23 ± 0.05 at.% by the inductively coupled plasma atomic emission spectrometry (ICP-AES, Ultima2, Jobin–Yvon). One cuboid with dimensions of 5.0 × 4.5 × 4.0 mm³ was cut from the as-grown crystal, and the optic axis is perpendicular to the face of 4.5 × 4.0 mm². All the surfaces of the cuboid were polished for spectral experiments. All experiments were carried out at room temperature.

Polarized absorption spectra were recorded using a spectrophotometer (Lambda900, Perkin–Elmer) in a range of 270–1800 nm. Polarized fluorescence spectra in a range of 480–1300 nm were measured using a spectrometer (FL920, Edinburgh) equipped with a xenon lamp as the exciting source. Hamamatsu R955 and R5509

^{*} Corresponding author. Tel.: +86 13959182610; fax: +86 591 83714946. E-mail address: huyd@fjirsm.ac.cn (Y.D. Huang).

photomultiplier tubes (PMTs) were used as the detectors in the VIS and NIR regions, respectively. A fluorescence decay curve of the ${}^{4}G_{5/2}$ multiplet was measured by another spectrometer (FLSP920, Edinburgh) equipped with a tunable mid-band optical parametric oscillator pulsed laser (~5 ns) (Vibrant 355II, OPOTEK) as the exciting source.

3. Results and discussion

3.1. Absorption spectra and Judd-Ofelt analysis

The room temperature absorption spectra were recorded in two principal polarizations, σ and π , which correspond to the electrical fields of the incident light perpendicular and parallel to the optic axis of the Sm³⁺:LiLuF₄, respectively, and are presented in Fig. 1. Owing to the anisotropy of this uniaxial crystal, the spectra have strong polarization dependence. The absorption bands corresponding to the transitions from the ground multiplet ${}^{6}H_{5/2}$ to the excited multiplets of Sm³⁺ ions for each polarization are assigned by comparing the spectra with the previous data of Sm^{3+} :LiYF₄ (see Fig. 2) [22] and labeled by corresponding excited multiplets in Fig. 1. A number of absorption transitions with quartet terminal multiplets, including ${}^{4}G_{5/2}$, 7/2 and ${}^{4}F_{3/2}$, expected in the 500–600 nm region, are too weak to be discerned. The absorption band around 401 nm for the transition of ${}^{6}H_{5/2} \rightarrow {}^{6}P_{5/2}$ is important for the crystal which will be pumped by GLD as gain medium of visible laser. The peak cross sections are 1.51×10^{-20} and 1.04×10^{-20} cm² for π and σ polarizations, respectively, and both at 401 nm. They are smaller than the unpolarized $3.87\times 10^{-20}\,\text{cm}^2$ at 408 nm and $2.44\times 10^{-20}\,cm^2~$ at $410\,nm~$ of $\,Sm^{3+}\!:\!GdVO_4~$ and $\,Sm^{3+}\!:\!YAP$ [12,23], respectively; but the peak cross section for π polarization of the Sm³⁺:LiLuF₄ is larger than the 1.37×10^{-20} cm² at 401 nm of $\text{Sm}^{3+}\text{:LiYF}_4$ and the 1.07 \times $10^{-20}\,\text{cm}^2$ at 405 nm of $\text{Sm}^{3+}\text{:GGG}$ crystal [10,24]. Full widths at half the maximum (FWHMs) of the absorption bands around 401 nm are about 2.3 nm for σ polarization and 3.1 nm for π polarization, which are comparable to the those for Sm³⁺:LiYF₄, while the values for Sm³⁺-doped GGG, GdVO₄ and YAP are 5, 8 and 8 nm, respectively [10,12,23].

Based on the polarized absorption spectra, spectral parameters of Sm³⁺ ion in LiLuF₄ were calculated by applying the Judd–Ofelt (J–O) theory [25,26], which has been widely used to calculate the line strengths of electric dipole (ED) transitions between multiplets for rare earth ions in solids. It should be noticed that transitions to some excited multiplets (${}^{6}F_{3/2, 5/2}$, ${}^{4}G_{5/2, 7/2}$, ${}^{4}F_{3/2, 5/2}$, and ${}^{4}H_{7/2}$) fulfils the selection rules for magnetic dipole (MD) transitions $\Delta J = 0$, 1. The line strength of MD transition does not change with the host environment significantly and could be calculated using the formulas provided in Refs. [10,27]. The values of the reduced matrix

Fig. 1. Room temperature polarized absorption spectra of Sm³⁺:LiLuF₄ crystal.

Fig. 2. Energy level scheme of Sm³⁺.

elements of unit tensor operators were taken from Ref. [28]. The detailed calculation process can be found in Ref. [10]. The refractive indices n_q for σ and π polarization reported in Ref. [29] were used in the calculation. Three intensity parameters Ω_t (t = 2, 4, 6) were determined by a least square fitting between the experimental and theoretical line strengths. The average wavelength $\bar{\lambda}$, measured line strength S_{exp}^{ED} , and that calculated from the J–O intensity parameters S_{cale}^{ED} for each band are listed in Table 1. The root mean square (rms) error is defined as

$$\operatorname{rms}\,\operatorname{error}_q = \frac{\operatorname{rms}\,\Delta S_q}{\operatorname{rms}\,S_q} \times 100\%,\tag{1}$$

where rms ΔS_q is the root mean square deviation and

$$\operatorname{rms} S_q = \sqrt{\sum_{i=1}^M S_{\exp,q}^2 / M},$$
(2)

in which *M* is the number of absorption bands adopted in the calculation. The values of rms ΔS_q and rms error_q are also listed in Table 1.

The effective J–O intensity parameters were calculated following $\Omega_{t,eff} = (2\Omega_{t,\sigma} + \Omega_{t,\pi})/3$ (t = 2, 4, 6) to facilitate comparison among different Sm³⁺-doped materials [30]. The J–O intensity parameters of Sm³⁺:LiLuF₄ and other Sm³⁺-doped crystals are listed in Table 2 for comparison. The $\Omega_{2.eff}$ for Sm³⁺:LiLuF₄ is larger than those for other Sm³⁺-doped fluoride crystal, such as Sm³⁺:K₂YF₅ and Sm³⁺:LiYF₄, but smaller than those of Sm³⁺-doped oxide crystals. One reason for the results is the stronger crystal field in the LiLuF₄ than those in other fluoride crystals [32]. Another is the weaker covalent bond of the Sm³⁺-F than that of the Sm³⁺-O [33–34].

From the polarized J–O intensity parameters, the ED spontaneous emission probability A_q^{ED} can be calculated. Taking the spontaneous emission probability of the MD transition A_q^{MD} into account, the average spontaneous emission probability can be calculated by $A = (2A_{\sigma} + A_{\pi})/3$ with $A_q = A_q^{\text{ED}} + A_q^{\text{MD}}$. Then the fluorescence branching ratio β and the radiative lifetime τ_r can be further estimated. The results are listed in Table 3. The spontaneous emission probability of σ polarization is smaller than that of π polarization in visible region, hence visible laser with π polarization can be expected. Furthermore, the branching ratio for the ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$ transition is the largest one and up to ~45%, so that Sm³⁺:LiLuF₄ crystal is suitable for 600 nm laser emission.

3.2. Fluorescence spectra

Under excitation at 401 nm, namely exciting the Sm^{3+} ions to the ${}^{6}P_{5/2}$ multiplet, polarized fluorescence spectra in the ranges

Table 1	1
---------	---

Mean wavelengths and experimental and calculated absorption line strengths of ED transitions of Sm³⁺:LiLuF₄ crystal at room temperature.

$^{6}H_{5/2} \rightarrow$	$\overline{\lambda}(nm)$	σ Polarized $S(J \rightarrow J') (10^{-20} \text{ cm}^2)$		$\overline{\lambda}(nm)$	π Polarized $S(J \rightarrow J') (10^{-20} \text{ cm}^2)$	
		$S_{\mathrm{exp}}^{\mathrm{ED}}$	S _{cale}		S _{exp}	S _{cale}
${}^{6}F_{1/2, 3/2}, {}^{6}H_{15/2}$	1509.6	0.96	0.98	1527.0	0.87	0.89
⁶ F _{5/2}	1408.2	0.83	0.85	1392.3	1.52	1.38
⁶ F _{7/2}	1250.7	1.09	1.33	1245.9	2.22	2.25
⁶ F _{9/2}	1084.1	0.99	0.80	1084.5	1.33	1.34
⁶ F _{11/2}	953.7	0.13	0.12	956.6	0.18	0.19
${}^{4}I_{9/2, 11/2, 13/2}, {}^{4}M_{15/2}$	472.5	0.17	0.16	478.4	0.48	0.26
${}^{4}F_{5/2}, {}^{4}M_{17/2}, {}^{4}G_{9/2}, {}^{4}I_{15/2}$	437.9	0.04	0.02	441.5	0.07	0.04
$({}^{6}P, {}^{4}P)_{5/2}, {}^{4}L_{13/2}, {}^{4}F_{7/2}, {}^{6}P_{3/2}, {}^{4}K_{11/2}, {}^{4}L_{15/2}, {}^{4}G_{11/2}$	401.6	0.58	0.61	404.2	1.04	1.05
${}^{4}D_{1/2}, {}^{4}P_{7/2}, {}^{4}L_{17/2}, {}^{4}K_{13/2}$	374.3	0.12	0.17	374.0	0.22	0.29
${}^{4}F_{9/2}, {}^{4}D_{3/2}, {}_{5/2}, {}^{6}P_{5/2}$	361.5	0.13	0.12	361.6	0.19	0.20
${}^{4}H_{7/2, 9/2, 11/2}, {}^{4}K_{15/2}, {}^{4}D_{7/2}$	345.6	0.13	0.09	344.1	0.15	0.15
rms $\Delta S(10^{-20} \text{ cm}^2)$		0.11			0.10	
rms error (%)		18.5			10.1	

Table 2

J-O intensity parameters for Sm³⁺-doped crystals.

Crystal		$\Omega_2~(10^{-20}~{ m cm}^2)$	$\Omega_4 (10^{-20}{ m cm}^2)$	$\Omega_{6}~(10^{-20}~{ m cm}^2)$	Refs.
Sm ³⁺ :LiLuF ₄	Ω_{σ}	1.76	2.79	2.17	This work
	Ω_{π}	0.66	4.77	3.65	
	$\Omega_{ m eff}$	1.39	3.45	2.66	
Sm ³⁺ :LiYF ₄		0.55	2.44	1.72	[24]
Sm ³⁺ :K ₂ YF ₅		0.38	3.55	2.18	[31]
Sm ³⁺ :GGG		3.90	2.48	1.83	[10]
Sm ³⁺ :CaNb ₂ O ₆		6.33	6.49	3.72	[13]

 Table 3

 Spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes of Sm³⁺:LiLuF₄ crystal.

Transition	$\overline{\lambda}_{em}(nm)$	$A^{\rm ED}_{\sigma}({ m s}^{-1})$	$A^{\mathrm{MD}}_{\sigma}(\mathrm{s}^{-1})$	$A^{\rm ED}_{\pi}({ m s}^{-1})$	$A^{\mathrm{MD}}_{\pi}(\mathrm{s}^{-1})$	$A(s^{-1})$	β (%)	$\tau_r(ms)$
${}^{4}G_{5/2} \rightarrow$								4.60
${}^{6}F_{11/2}$	1395.0	0.18	0	0.29	0	0.22	0.10	
⁶ F _{9/2}	1185.3	0.96	0	0.68	0	0.86	0.40	
⁶ F _{7/2}	1043.7	1.63	0.94	2.64	0.90	2.90	1.33	
⁶ F _{5/2}	954.1	7.18	3.07	5.02	2.91	9.47	4.36	
⁶ F _{3/2}	910.1	1.05	4.51	0.54	4.28	5.32	2.45	
⁶ H _{15/2}	901.6	0.21	0	0.34	0	0.26	0.12	
${}^{6}F_{1/2}$	890.2	0.89	0	0.32	0	0.70	0.32	
⁶ H _{13/2}	795.0	3.19	0	5.08	0	3.82	1.76	
${}^{6}H_{11/2}$	713.0	19.12	0	30.84	0	23.03	10.59	
⁶ H _{9/2}	649.5	55.87	0	57.77	0	56.50	25.98	
⁶ H _{7/2}	600.7	71.91	10.78	115.17	10.23	96.92	44.57	
⁶ H _{5/2}	564.2	4.39	12.83	5.78	12.17	17.46	8.03	

of 450–800 nm and 800–1300 nm were recorded and are shown in Figs. 3 and 4, respectively. According to the energy level positions of Sm³⁺ ions in LiYF₄ crystal (see Fig. 2) [22], the emission bands around 564, 600, 650, and 713 nm are attributed to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2, 9/2, and 11/2) transitions, respectively, while the bands around 900, 1020, and 1160 nm are attributed to the ${}^{4}G_{5/2} \rightarrow {}^{6}F_{1/2}$, ${}^{3/2}, {}^{5/2} + {}^{6}H_{15/2}, {}^{4}G_{5/2} \rightarrow {}^{6}F_{7/2}$, and ${}^{4}G_{5/2} \rightarrow {}^{6}F_{9/2}$ transitions, respectively. The ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ emission with the most intense line around 600 nm is the possible channel for visible laser mentioned above.

It can be seen from Table 3 that the ${}^{4}G_{5/2}$ to ${}^{6}H_{J}$ (J = 9/2, 11/2, 13/2, and 15/2) and ${}^{6}F_{J}$ (J = 1/2, 9/2, and 11/2) are purely ED transitions but the ${}^{4}G_{5/2}$ to ${}^{6}H_{5/2, 7/2}$ and ${}^{6}F_{3/2, 5/2, 7/2}$ also obey MD transitions selection rule $\Delta J = \pm 1, 0$. The ${}^{4}G_{5/2}$ to ${}^{6}H_{5/2}$ and ${}^{6}F_{3/2}$ transitions are dominated by MD but the ${}^{4}G_{5/2}$ to ${}^{6}H_{7/2}$ is dominated by ED. These are in agreement with Ref. [24]. A MD transition does not change with the host environment significantly but an ED transition is sensitive to the crystal field. Therefore, as shown in Fig. 3 the intensities of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ transition for both polarizations are almost the same whereas the intensity of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ transition for π

Fig. 3. Room temperature polarized fluorescence spectra of Sm^{3+} :LiLuF₄ crystal in visible region under excitation at 401 nm.

Fig. 4. Room temperature polarized fluorescence spectra of Sm^{3+} :LiLuF₄ crystal in infrared region under excitation at 401 nm.

polarization is higher than that for σ polarization. These results are in agreement with the calculated emission probabilities listed in Table 3.

The stimulated emission cross sections for the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/ 2, 7/2, 9/2, and 11/2) transitions can be calculated by the F–L formula [35]

$$\sigma_q^{em}(\lambda) = \frac{A_q \lambda^5 I_q(\lambda)}{8\pi c n_q^2 \int \lambda I_q(\lambda) d\lambda},\tag{3}$$

where $I_q(\lambda)$ is the emission intensity at wavelength λ and c is the speed of light. The peak emission cross sections of the ${}^4G_{5/2} \rightarrow {}^6H_J$ (J = 5/2, 7/2, 9/2, and 11/2) transitions were calculated and are listed in Table 4. The largest cross-section is at 605 nm for π polarization and the value is $14.21 \times 10^{-22} \text{ cm}^2$, which is smaller than those of Sm³⁺-doped oxide crystals, such as the $31.7 \times 10^{-22} \text{ cm}^2$ for Sm³⁺: GGG, $35.4 \times 10^{-22} \text{ cm}^2$ for Sm³⁺:Gd_2SiO₅ and $17.2 \times 10^{-22} \text{ cm}^2$ for Sm³⁺:YAP [10,11,25]. However, it is larger than the $0.64 \times 10^{-22} \text{ cm}^2$ for Sm³⁺:K₂YF₅ and $10.39 \times 10^{-22} \text{ cm}^2$ for Sm³⁺: LiYF₄ [24,31].

3.3. Fluorescence dynamics

Fig. 5 shows the fluorescence decay curve of the ${}^{4}G_{5/2}$ multiplet for Sm³⁺:LiLuF₄ recorded by measuring the emission of the ${}^{4}G_{5/2}$ ${}_{2} \rightarrow {}^{6}H_{7/2}$ transition at 605 nm under excitation at 401 nm. It can be found that the decay of the ${}^{4}G_{5/2}$ multiplet is not single exponential, which generally implies that some energy transfer processes, such as the ${}^{4}G_{5/2} + {}^{6}H_{5/2} \rightarrow {}^{6}F_{11/2} + {}^{6}F_{5/2}$ and ${}^{4}G_{5/2} + {}^{6}H_{5/2}$ ${}_{2} \rightarrow {}^{6}F_{7/2} + {}^{6}F_{9/2}$ denoted by (a) and (b) in Fig. 6, respectively, have influenced the decay of the ${}^{4}G_{5/2}$ multiplet [36,37].

In general, the energy-transfer process between activator ions becomes more frequent due to the distance between activator ions

Fig. 5. Room temperature fluorescence decay curve of the ${}^{4}G_{5/2}$ multiplet of Sm³⁺:LiLuF₄ crystal at 605 nm under excitation at 401 nm.

decreases as the activator concentration increases, which provides an extra decay channel. The non-exponential character of the fluorescence decay can be analyzed by the Inokuti–Hirayama (I–H) model [38], which assumes energy transfer from an excited Sm³⁺ donor to the surrounding Sm³⁺ acceptors in the ground state. According to this model, the fluorescence intensity can be described by

$$I(t) = I(0) \exp\left[-\frac{t}{\tau_0} - \Gamma\left(1 - \frac{3}{s}\right) \frac{N_0}{C} \left(\frac{t}{\tau_0}\right)^{\frac{3}{s}}\right],\tag{4}$$

where I(t) is the fluorescence intensity at time t, τ_0 is the intrinsic fluorescence lifetime in the absence of the energy transfer, N_0 is the Sm³⁺ concentration expressed in ion/cm³. $C = 3/4\pi R_c^3$ is the critical concentration related to the critical distance R_c defined as the distance at which the rate of energy transfer between the acceptor–donor pairs equals to the spontaneous decay rate of the excited donor, $\Gamma(x)$ is the gamma function evaluated in x, and s = 6, 8, and 10 correspond to the electric dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole energy transfer mechanisms, respectively.

By the I–H model, the best fitting result of the experimental decay curve was obtained with *s* = 6. It indicates that the electric dipole–dipole energy transfer between Sm³⁺ ions is the dominate mechanism in the 2.23 at.% Sm³⁺:LiLuF₄ crystal. The values of τ_0 and *C* for the crystal were fitted as 4.52 ms and 3.87 × 10²⁰ cm⁻³, respectively. Then, the critical distance R_c was derived as 0.85 nm. The average Sm–Sm distance in the crystal could be obtained from $R_{av} = (4\pi N_0/3)^{-1/3}$ and the value is 0.90 nm. The R_{av} of the 2.23 at.% Sm³⁺:LiLuF₄ crystal is close to the R_c , which suggests that it is possible to find an acceptor inside the critical distance of an excited Sm³⁺ ion. The τ_0 is close to the τ_r in Table 3, which means that the multiphonon relaxation (MPR) rate from the ${}^4G_{5/2}$ multiplet to the next lower multiplet ${}^6F_{11/2}$ is negligible

Table 4

Peak fluorescence wavelengths, FWHMs, and stimulated emission cross sections σ^{em} of the transitions starting from the ${}^{4}G_{5/2}$ multiplet of Sm³⁺:LiLuF₄ crystal.

Transition	Polarization	Peak wavelength (nm)	FWHM (nm)	$\sigma^{\rm em}(10^{-22}~{\rm cm}^2)$
${}^{4}G_{5/2} \rightarrow$				
⁶ H _{11/2}	σ	702.5	3.2	3.05
	π	702.0	5.2	5.26
⁶ H _{9/2}	σ	643.5	2.8	6.37
	π	648.5	7.2	7.82
⁶ H _{7/2}	σ	597.5	7.5	6.59
	π	605.0	9.5	14.21
⁶ H _{5/2}	σ	562.5	6.8	1.19
	π	561.5	7.8	1.18

Fig. 6. Mechanisms of energy transfer between Sm³⁺.

as there is a large energy gap of about 7000 cm⁻¹ between them. Therefore, the electric dipole–dipole energy transfer between Sm^{3+} ions is the dominated nonradiative decay channel for the ${}^{4}G_{5/2}$ multiplet.

The average fluorescence lifetime τ_f of the ${}^4G_{5/2}$ multiplet could be obtained from the experimental decay curve by means of

$$\tau_f = \frac{\int_0^\infty tI(t)dt}{\int_0^\infty I(t)dt},\tag{5}$$

The fluorescence lifetime of the ${}^{4}G_{5/2}$ multiplet was obtained to be 2.65 ms and shorter than the τ_0 . It proves the existence of energy transfer related to the ${}^{4}G_{5/2}$ multiplet between Sm³⁺ ions in this 2.23 at.% Sm³⁺:LiLuF₄ crystal. The fluorescence lifetime is longer than those of Sm³⁺-doped oxide crystals, such as 2.1 ms for 0.56 at.% Sm³⁺:GGG, 1.7 ms for 0.5 at.% Sm³⁺:Gd₂SiO₅ and 0.55 ms for 2 at.% Sm^{3+} :GdVO₄ [10–12]. However, it is shorter than other Sm^{3+} -doped fluoride crystals, such as 4.8 ms for 1.0 at.% $Sm^{3+}:K_2YF_5$, 4.9 ms for 0.1 at.% $Sm^{3+}:KY_3F_{10}$ and 4.8 ms for 0.52 at.% Sm^{3+} :LiYF₄ [24,31,39]. This is due to the stronger energy transfer in the LiLuF₄ crystal doped with higher concentration of Sm³⁺. The quantum efficiency η ($\eta = \tau_f / \tau_r$) of the ${}^4G_{5/2}$ multiplet was estimated to be 57.6%, which is lower than Sm³⁺:GGG (84%), Sm³⁺:K₂YF₅ (93.6%) and Sm³⁺:LiYF₄ (69%) [10,24,31]. The main reason for the lower quantum efficiency in the Sm³⁺:LiLuF₄ than those in other oxide or fluoride crystals is the stronger cross relaxation caused by the higher concentration of Sm³⁺ ions in the crystal.

4. Conclusion

A 2.23 at.% Sm³⁺-doped LiLuF₄ single crystal was grown by the vertical Bridgman-Stockbarge technique. The polarized absorption and emission spectra and the fluorescence decay curve of the ${}^{4}G_{5/2}$ multiplet were measured. The intensity parameters Ω_t (t = 2, 4, 6) have been evaluated based on the J-O theory, together with the radiative transition rates, the luminescent branching ratios, and the radiative lifetime of the ${}^{4}G_{5/2}$ multiplet. Cross relaxation dominates the non-radiative decay of the ${}^{4}G_{5/2}$ multiplet in this crystal. The critical distance R_c is about 0.76 nm. The fluorescence lifetime and quantum efficiency of the ${}^{4}G_{5/2}$ multiplet are 2.65 ms and 57.6%, respectively. The emission cross sections of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{I}$ (I = 5/2, 7/2, 9/2, and 11/2) transitions were calculated. The peak emission cross section at 605 nm for the Sm3+:LiLuF4 crystal is $14.39\times 10^{-22}\,\text{cm}^2$ for π polarization. The results indicate that Sm³⁺:LiLuF₄ crystal may be a potential visible laser material around 605 nm.

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant 91122033) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant KJCX2-EW-H03-01).

References

- [1] P. Camy, J.L. Doualan, R. Moncorge, J. Bengoechea, U. Weichmann, Diodepumped Pr³⁺:KY₃F₁₀ red laser, Opt. Lett. 32 (2007) 1462.
- [2] M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, V. Škoda, Visible cw laser emission of GaN-diode pumped Pr:YAIO₃ crystal, Appl. Phys. B 97 (2009) 363.
- [3] T. Gün, P. Metz, G. Huber, Power scaling of laser diode pumped Pr³⁺:LiYF₄ cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm, Opt. Lett. 36 (2011) 1002.
- [4] S.R. Bowman, S. O'Connor, N.J. Condon, Diode pumped yellow dysprosium lasers, Opt. Express 20 (2012) 12906.
- [5] R.F. Wei, C.G. Ma, Y.L. Wei, J.Y. Gao, H. Guo, Tunable white luminescence and energy transfer in novel Cu⁺, Sm³⁺ co-doped borosilicate glasses for W-LEDs, Opt. Express 20 (2012) 29743.
- [6] H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, Photoluminescence properties of a novel orange red emitting Sr₄Al₁₄O₂₅:Sm³⁺ phosphor and PL enhancement by Bi³⁺ co-doping, Opt. Mater. 34 (2012) 1375.
 [7] B.N. Kazakov, M.S. Orlov, M.V. Petrov, A.L. Stolov, A.M. Tkachuk, Induced
- [7] B.N. Kazakov, M.S. Orlov, M.V. Petrov, A.L. Stolov, A.M. Tkachuk, Induced emission of Sm³⁺ ions in the visible region of the spectrum, Opt. Spectrosc. 47 (1979) 676.
- [8] H.P. Jenssen, Advanced Solid State Lasers Technical Digest, ME2-1/73, Memphis, 1995.
- [9] M.C. Farries, P.R. Morkel, J.E. Townsend, Samarium³⁺-doped glass laser operating at 651 nm, Electron. Lett. 24 (1988) 709.
- [10] W.P. Liu, Q.L. Zhang, D.L. Sun, J.Q. Luo, C.J. Gu, H.H. Jiang, S.T. Yin, Crystal growth and spectral properties of Sm:GGG crystal, J. Cryst. Growth 331 (2011) 83.
- [11] A. Strzep, R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Berkowski, Optical spectra and excited state relaxation dynamics of Sm³⁺ in Gd₂SiO₅ single crystal, Appl. Phys. B 106 (2012) 85.
- [12] X.M. He, L.H. Zhang, G.Z. Chen, Y. Hang, Crystal growth and spectral properties of Sm:GdVO₄, J. Alloys Comp. 467 (2009) 366.
- [13] J.Q. Di, X.D. Xu, C.T. Xia, H.D. Zeng, Y. Cheng, D.Z. Li, D.H. Zhou, F. Wu, J.M. Cheng, J. Xu, Crystal growth and optical properties of Sm:CaNb₂O₆ single crystal, J. Alloys Comp. 536 (2012) 20.
 [14] G. Dominiak-Dzik, Sm³⁺-doped LiNbO₃ crystal, optical properties and emission
- [14] G. Dominiak-Dzik, Sm³⁺-doped LiNbO₃ crystal, optical properties and emission cross-sections, J. Alloys Comp. 391 (2005) 26.
- [15] I.A. Ivanova, A.N. Morozov, M.A. Petrova, I.G. Podkolzina, P.P. Feofilov, Preparation and properties of single crystals of double fluorides of lithium and the rare earths, Inorg. Mater. 11 (1975) 1868.
- [16] F. Cornacchia, A. Toncelli, M. Tonelli, 2 μm Lasers with fluoride crystals: research and development, Prog. Quantum Electron. 33 (2009) 61.
- [17] F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, M. Tonelli, Visible laser emission of solid state pumped LiLuF₄:Pr³⁺, Opt. Express 15 (2007) 992.
- [18] A.A. Kaminskii, K. Ueda, N. Uehara, H.R. Verdun, Room-temperature diodelaser-pumped efficient CW and Quasi-CW single-mode lasers based on Nd³⁺doped cubic disordered α-NaCaYF₆ and tetragonal ordered LiLuF₄ crystals, Phys. Status Solidi A 140 (1993) K45.
- [19] N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, M. Tonelli, Tm-doped LiLuF₄ crystal for efficient laser action in the wavelength range from 1.82 to 2.06μ m, Opt. Lett. 32 (2007) 2040.
- [20] M. Schellhorn, A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions, Appl. Phys. B 103 (2011) 777.
- [21] J.G. Yin, Y. Hang, X.M. He, L.H. Zhang, C.C. Zhao, J. Gong, P.X. Zhang, Direct comparison of Yb³⁺-doped LiYF₄ and LiLuF₄ as laser media at roomtemperature, Laser Phys. Lett. 9 (2012) 126.
- [22] J.P.R. Wells, M. Yamaga, T.P.J. Han, H.G. Gallagher, M. Honda, Polarized laser excitation, electron paramagnetic resonance, and crystal-field analyses of Sm³⁺-doped LiYF₄, Phys. Rev. B 60 (1999) 3849.
- [23] Y.H. Zong, G.J. Zhao, J. Zhu, J. Xu, Growth and its spectroscopic properties of Sm:YAP crystal, J. Cryst. Growth 291 (2006) 468.
- [24] G.Q. Wang, Y.F. Lin, X.H. Gong, Y.J. Chen, J.H. Huang, Z.D. Luo, Y.D. Huang, Polarized spectral properties of Sm³⁺:LiYF₄ crystal, J. Lumin. 147 (2014) 23.
- [25] B.R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev. 127 (1962) 750.
- [26] G.S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (1962) 511.
- [27] M.J. Weber, Probabilities for radiative and nonradiative decay of Er³⁺ in LaF₃, Phys. Rev. 157 (1967) 262.
- [28] C.K. Jayasankar, E. Rukmini, Optical properties of Sm³⁺ ions in zinc and alkali zinc borosulfate glasses, Opt. Mater. 8 (1997) 193.
- [29] M.J. Weber, Handbook of Optical Materials, CRC Press, Boca Raton, 2003.
- [30] Z.D. Luo, X.Y. Chen, T.J. Zhao, Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements, Opt. Commun. 134 (1997) 415.

- [31] P.V. Do, V.P. Tuyen, V.X. Quang, N.T. Thanh, V.T.T. Ha, N.M. Khaidukov, Y. Lee, B.T. Huy, Judd–Ofelt analysis of spectroscopic properties of Sm³⁺ ions in K₂YF₅ crystal, J. Alloys Comp. 520 (2012) 262.
- [32] B.M. Walsh, N.P. Barnes, M. Petros, J. Yu, U.N. Singh, Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm^{3+} and Ho^{3+} in YLiF₄ and LuLiF₄, J. Appl. Phys. 95 (2004) 3255.
- [33] W.F. Krupke, Optical absorption and fluorescence intensities in several rareearth-doped Y₂O₃ and LaF₃ single crystals, Phys. Rev. 145 (1966) 325.
- [34] R. Praveena, R. Vijaya, C.K. Jayasankar, Photoluminescence and energy transfer studies of Dy³⁺-doped fluorophosphate glasses, Spectrochim. Acta, Part A 70 (2008) 577.
- [35] Z.D. Luo, Y.D. Huang, X.Y. Chen, Spectroscopy of Solid-State Laser and Luminescent Materials, Nova Science, New York, 2007.
- [36] P. Solarz, W. Ryba-Romanowski, Luminescence and energy transfer processes of Sm³⁺ in K₅Li₂LaF₁₀:Sm³⁺-K₅Li₂SmF₁₀ single crystals, Phys. Rev. B 72 (2005) 075105.
- [37] M. Malinowski, B. Jacquier, G. Boulon, W. Woliński, J. Lumin. 39 (1988) 301.
- [38] M. Inokuti, F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys. 43 (1965) 1978.
- [39] J.P.R. Wells, A. Sugiyama1, T.P.J. Han, H.G. Gallagher, Laser site selective excitation of KY₃F₁₀-doped with samarium, J. Lumin. 85 (1999) 91.