• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / Pr:YLF

Pr:YLF

Pr3+:YLF has been found as promising laser material for producing visible lasers directly. Many trivalent rare-earth ions (RE3) exhibit visible radiative transitions that potentially enable visibly emitting solid-state lasers. So far, various visible lasers based on RE3+-doped crystalline media have been demonstrated. Among them, trivalent praseodymium ion (Pr3) is recognized as one of the most successful active ions for achieving efficient visible lasers because the visible transitions of Pr3+ follow a four-level system, and their emission cross sections are larger than that of other RE3+. Many other RE3+ also exhibit visible transitions; however, these are often spin-forbidden, resulting in very small absorption and emission cross sections. Moreover, some visible transitions in RE3+ follow a three-level system, which is unattractive for laser demonstration. Only few laser materials have necessary properties for realization of lasing in visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for using with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark-red (720 nm, 3P0 3F3+3F4) spectral regions.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientationa-cut
Parallelism<10〞
Perpendicularity<10ˊ
Surface Quality10-5 S-D
Wavefront Distortion<λ/4 per inch@632.8 nm
Surface Flatness<λ/8 @632.8 nm
Clear Aperture>90%
Face Dimensions Tolerance+0/-0.1 mm
Length Tolerance±0.1mm
Chamfer0.1mm@45°
CoatingsR<1%@440-444nm+R<0.6%@500-700nm on both faces
Laser Induced Damage Threshold>5J/cm2@532nm, 10ns
Physical and Chemical Properties
Structure SymmetryTetragonal
Lattice Constantsa=5.164, c=10.732 Å
Specific mass3.95g/cm3
Melting Point819°C
Thermal Conductivity /(W·m-1·K-1)6
Thermal Expansion /(10-6·K-1 )~16
Hardness ( @Mohs)5
Optical characteristics
Typical Doping Level1@.%
Refractive Index (@1064nm)no=1.448, ne=1.470
Thermo-optic Coefficient(10-6·K-1)-5.2(∥c), -7.6(∥a)
Lifetime of 3P0 Erbium Energy Level(μs)50
Emission Cross-section(10-20/cm2)20×10-20cm2
Absorption Peak Wavelength444nm
Absorption Cross-section at Peak8×10-20cm2
Absorption Bandwidth at Peak Wavelength~5nm
Laser Wavelength640nm
Absorption and Emission Spectrum

Feature
Application
Literature
Feature
  • High absorption and emission cross-sections(~10-19cm2)
  • Good overlapping of the absorption band in the blue spectral region withthe emission
  • Lines of the InGaN laser diodes and 2ω-OPSL
  • Custom crystals available upon request
Application
  • Diode-pumped solid-state lasers for precise and efficient processing of metals such as copper or gold, entertainment industry and science
  • Broadband laser mirrors
  • Wavelength separators and combiners
  • Polarizing cubes
Literature
[1]  Yz A ,  Lz A ,  Teng Z A , et al. Blue diode-pumped single-longitudinal-mode Pr:YLF lasers in orange spectral region – ScienceDirect[J]. Optics & Laser Technology, 130.
[2]  Jin L ,  Dai W C ,  Yu Y J , et al. Single longitudinal mode Q-switched operation of Pr:YLF laser with pre-lase and Fabry–Perot etalon technology[J]. Optics & Laser Technology, 2020, 129:106294.
[3]  Luo S ,  Cai Z ,  Sheng C , et al. 604-nm high-order vortex beams directly generated from a Pr:YLF laser with a cavity-loss-induced gain switching mechanism[J]. Optics & Laser Technology, 2020, 127.
[4] Luo, Saiyu, Yan, et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm[J]. Optics Communications A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics & Interaction of Light with Matter, 2016.
[5]  Luo S ,  Cai Z ,  Xu H , et al. Direct oscillation at 640-nm in single longitudinal mode with a diode-pumped Pr:YLF solid-state laser[J]. Optics & Laser Technology, 2019, 116:112-116.
[6]  Xu B ,  Liu Z ,  Xu H , et al. Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm[J]. Optics Communications, 2013, 305(Complete):96-99.
[7]  Xu B ,  Cheng Y ,  Qu B , et al. Power scaling of InGaN-LD-pumped Pr3+:LiYF4 Continuous-Wave deep red lasers at 697.6 and 695.8 nm[J]. Optics & Laser Technology, 2015, 67:146-149.
[8]  Cui S ,  Xu B ,  Luo S , et al. Intracavity generated visible self-reconstructing Bessel-like laser beams by thermal effect[J]. Optics Communications, 2019, 458.
[9]  Li Q S ,  Yuan D ,  Yu L , et al. Effect of cavity length on low-energy single longitudinal mode pre-lase Q-switched laser[J]. Optics & Laser Technology, 2017, 94:165-170.
[10]  Wang J ,  Qi L ,  Zheng Q , et al. 430nm DPSS blue laser generated by sum-frequency mixing[J]. Optik, 2018, 170:233-236.
[11] Yongjie, Cheng, Jian, et al. Passive Q-switching of Pr:LiYF4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber[J]. Optics & Laser Technology, 2017.
[12] Walsh, Brian, M, et al. Mid-infrared spectroscopy of Pr-doped materials[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2018, 197:349-353.
[13] Diode-pumped continuous-wave a- and c-cut Pr:Sr 0.5 La 0.5 Mg 0.5 Al 11.5 O 19 (Pr:ASL) visible lasers at 645 and 726nm[J]. Journal of Alloys and Compounds, 2019, 792:1200-1205.
[14]  Qu B ,  Doualan J L ,  Xu B , et al. Detailed luminescence properties and laser potential of Pr:FAP[J]. Journal of Luminescence, 2016:402-407.
[15]  Fujimoto Y ,  Nakanishi J ,  Yamada T , et al. Visible fiber lasers excited by GaN laser diodes[J]. Progress in Quantum Electronics, 2013, 37(4):185-214.
[16]  Lin X ,  Zhu Y ,  Ji S , et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+: YLF lasers[J]. Optics & Laser Technology, 2020, 129(1):106281.
[17] Kajikawa, Shota, Yoshida, et al. Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene[J]. Optics Communications: A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics and Interaction of Light with Matter, 2018, 424:13-16.
[18]  Zhou S ,  Pan Y ,  Li N , et al. Spectroscopy and diode-pumped laser operation of Pr:LaMgAl11O19 crystal[J]. Optical Materials, 2019, 89(MAR.):14-17.
[19]  Zhang H ,  Wang J ,  Hasan T , et al. Photonics of 2D materials[J]. Optics Communications, 2018:S0030401817308994.
[20]  Cai G X ,  Zhou M ,  Liu Z , et al. Spectroscopic analysis of Pr3+:Gd3Ga5O12 crystal as visible laser material[J]. Optical Materials, 2010, 33(2):191–195.
[21] 祖延雷, 张建秀, 傅佩珍, et al. Growth and optical properties of Pr~(3+):La_2CaB_(10)O_(19) crystal[J]. 中国稀土学报:英文版, 2009(6):911-914.
[22]  Yu H ,  Qian X ,  Guo L , et al. Pr:Ca 1-x R x F 2+x (R=Y or Gd) crystals: Modulated blue, orange and red emission spectra with the proportion of R 3+ ions[J]. Optical Materials, 2018, 78:88-93.
[23]  Soulard R ,  Xu B ,  Doualan J L , et al. Ground- and excited-state absorption and emission spectroscopy of Nd:GGG[J]. Journal of Luminescence, 2012, 132(10):2521-2524.
[24]  Huber G ,  Heumann E ,  Sandrock T , et al. Up-conversion processes in laser crystals[J]. Journal of Luminescence, 1997, 72(96):1-3.
[25]  Abramczyk H . Generation of Ultrashort Laser Pulses[J]. Introduction to Laser Spectroscopy, 2005:31-58.
[26]  Pask H M ,  Dekker P ,  Mildren R P , et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 2008, 32(3-4):121-158.
[27] Few-layer Bi 2 Se 3 -based passively Q-switched Pr:YLF visible lasers
[28] Spatial anomalies in spectral-kinetic properties of Pr 3þ – Doped LiY 1-x Lu x F 4 mixed crystals

Related Product

Nd-YLF-Crystal-Halide-Crylink
Nd:YLF
Tm-YLF-Crystal-Halide-Crylink
Tm:YLF
Ho-YLF-Crystal-Halide-Crylink
Ho:YLF

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-21-66566068
Address: Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.