• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / MgF2

MgF2

MgF2 Crystal- CRYLINK
MgF2 Block

Magnesium Fluoride (MgF2) is commonly used for UV windows, lenses and polarisers. It is also useful in its transmission range for some IR spectroscopy applications. Magnesium Fluoride (MgF2) Windows offer excellent broadband transmission from the deep-UV to the mid-infrared. DUV transmission makes them ideal for use at the Hydrogen Lyman-alpha line and for UV radiation sources and receivers, as well as excimer laser applications. Windows, lenses, and prisms made of this material can be used over the entire range of wavelengths from 0.120 μm (vacuum ultraviolet) to 8.0 μm (infrared). MgF2 is tough and works and polishes well, but it is slightly birefringent and should be cut with the optic axis perpendicular to the plane of the window or lens, Generally, Magnesium Fluoride for laser use is recommended to be oriented along the optic axis to avoid birefringent effects. It is particularly useful for excimer laser application.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Orientation[100] or [001] < ±0.5°
Orientation Tolerance< 0.5°
Parallelism5〞
Perpendicularity3ˊ
Surface Quality10-5 (Scratch/Dig)
Wavefront Distortion<λ/4@632 nm
Surface Flatness<λ/8 @632 nm
Clear Aperture>90%
Chamfer<0.1×45°
Thickness/Diameter Tolerance±0.05 mm
Maximum DimensionsDia150 mm×60mm(C-cut)
Physical and Chemical Properties
Crystal Structuretetragonal
Lattice Constants4.64
Density3.18 g/cm3
Melting Point1255°C
Thermal Conductivity /(W·m-1·K-1@25°C)0.3
Specific Heat/ (J·g-1·K-1)1.003
Thermal Expansion /(10-6·K-1@25°C )13.7
Hardness (Mohs)4.15
Young`s Modulus /GPa138.5
Optical characteristics
Transmission Range0.11 … 7.5 µm  
Refractive Index  no = 1.3836, ne = 1.3957 @0.405 µm  
Reflective Loss 5.1% @4.0 µm; 11.2% @0.12 µm  
Poisson Ratio0.271
Index of Refraction
μmNoNeμmNoNeμmNoNe
0.11371.7805 0.11491.742 0.11791.68 
0.11981.651 0.1211.6281.6320.131.5661.568
0.141.50951.5230.151.481.4940.161.4611.475
0.171.4481.4620.1814391.4530.191.4311.444
0.21.4231.4370.221.4131.4260.2481.4031.416
0.2571.4011.4140.2661.3991.4120.281.3961.409
0.31.3931.4050.331.3891.4020.3371.3891.401
0.351.3871.40.3551.3861.3990.41.3841.396
0.5461.3791.390.71.3761.3881.0871.3731.385
1.5121.371.38221.3681.3792.51.3641.375
3.031.361.373.5711.3541.36441.3491.359
4.5461.3411.3551.3341.3435.5561.3241.332
Spectrum

Feature
Application
Literature
Feature
  • Excellent transmission from 120nm to 7um
  • Chemically stable
  • Large resistance to thermal shock
  • Irradiation does not lead to color centers
  • Uniformly distributed Co
Application
  • Window and focusing mirror for deep uv and excimer lasers
  • Optical fiber communication,
  • Wave plate,High Energy WavePlate
  • Achromatic Waveplates
  • Glanprisms
Literature
[1]  Ning Y ,  Wang J ,  Ou C , et al. NiCr–MgF2 spectrally selective solar absorber with ultra-high solar absorptance and low thermal emittance[J]. Solar Energy Materials and Solar Cells, 2019, 206:110219.
[2]  Matsuo T ,  Kato T ,  Kimura H , et al. Evaluation of dosimetric properties of Tb-doped MgF2 transparent ceramics[J]. Optik – International Journal for Light and Electron Optics, 2019, 203:163965.
[3]  Hughes-Currie R B ,  Ivanovskikh K V ,  Wells J , et al. Intrinsic electronic excitations and impurity luminescent centres in NaMgF_3 and MgF_2 doped with Yb~(2+)[J]. Optical Materials, 2020, 99(Jan.):109553.1-109553.7.
[4]  Song J D ,  Song T Y ,  Zhang T T , et al. High performance V 2 O 5 /MgF 2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane: Support-induced evolution of new active sites[J]. Journal of Catalysis, 2018, 364:271-281.
[5] Arroussi, A, Ghezali, et al. First-principles study of the structural, electronic and optical properties of MgF2[J]. Journal for Light and Electronoptic, 2018.
[6]  Fang X X ,  Liao W M ,  Song J D , et al. Effect of Fe promotion on the performance of V2O5/MgF2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane[J]. Applied Surface Science, 2019, 490(OCT.1):365-371.
[7]  Sun X ,  Tu J ,  Li L , et al. Preparation of wide-angle and abrasion-resistant multi-layer antireflective coatings by MgF 2 and SiO 2 mixed sol[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020:125106.
[8]  Toghyani S ,  Khodaei M ,  Razavi M . Magnesium scaffolds with two novel biomimetic designs and MgF2 coating for bone tissue engineering[J]. Surface and Coatings Technology, 2020, 395:125929.
[9]  Syed W ,  Rafiq N ,  Ali A , et al. Multilayer AR coatings of TiO 2 /MgF 2 for application in optoelectronic devices[J]. Optik – International Journal for Light and Electron Optics, 2017, 136:564-572.
[10]  Nakamura F ,  Kato T ,  Okada G , et al. Scintillation, dosimeter and optical properties of MgF 2 transparent ceramics doped with Gd 3+[J]. Materials Research Bulletin, 2017, 98.
[11]  Chen H ,  Jie Y ,  Chang L , et al. Reaction behavior of MgF2 powder in hexafluoropropylene/air atmospheres at high temperatures[J]. Solid State Ionics, 2019, 340:115016.
[12]  Ding K ,  Zhang X ,  Ning L , et al. Hue Tunable, High Color Saturation and High-Efficiency Graphene/Silicon Heterojunction Solar Cells with MgF 2 /ZnS Double Anti-Reflection Layer[J]. Nano Energy, 2018:S2211285518300673.
[13]  Li J ,  Xu W ,  Lin X , et al. A Ca-deficientca-deficient hydroxyapatite (CDHA)/MgF 2 bi-layer coating with unique nano-scale topography on biodegradable high-purity Mg[J]. Colloids and Surfaces B: Biointerfaces, 2020, 190:110911.
[14] JS Youn, DT Phan, CM Park,等. Enhancement of hydrogen sorption properties of MgH2 with a MgF2 catalyst[J]. International Journal of Hydrogen Energy, 2017.
[15]  Sun X ,  Xu X ,  Song G , et al. Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol–gel combined with electron beam evaporation[J]. Optical Materials, 2020, 101:109739-.
[16] Mohammad, Reza, Tohidifar. Low-temperature sintering and densification kinetics of sol-gel derived lithium-mica glass-ceramics through MgF2 addition – ScienceDirect[J]. Journal of Non-Crystalline Solids, 521:119497-119497.
[17]  Reuna J ,  Polojarvi V ,  Paakkonen P , et al. Influence of ex-situ annealing on the properties of MgF2 thin films deposited by electron beam evaporation[J]. Optical Materials, 2019, 96:109326-.
[18]  Park H W ,  Jo H ,  Anoop G , et al. Transition metal ion Co-Doped MgO–MgF2-GeO2:Mn4+ red phosphors for white LEDs with wider color reproduction gamut[J]. Journal of Alloys and Compounds, 2019, 818:152914.
[19] Microstructure, mechanical properties and sintering mechanism of pressureless-sintered porous Si3N4 ceramics with YbF3-MgF2 composite sintering aids[J]. Ceramics International, 2020, 46(2):2558-2564.
[20]  Fujihara S ,  Tada M ,  Kimura T . Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method[J]. Journal of Nano Research, 2008, 304(1):550.
[21]  Ji Z ,  Bao L ,  Wang H , et al. Preparation of super-hydrophobic antireflective films by rod-like MgF 2 and SiO 2 mixed sol[J]. Materials Letters, 2017, 207:21-24.
[22]  Nakamura F ,  Kato T ,  Okada G , et al. Scintillation and storage luminescence properties of MgF 2 transparent ceramics doped with Ce 3+[J]. Optical Materials, 2017, 72:470-475.
[23] Fumiya, Nakamura, Takumi, et al. Scintillation and TSL properties of MgF2 transparent ceramics doped with Eu2+ synthesized by spark plasma sintering[J]. Journal of Alloys & Compounds, 2017.
[24]  Jia Z ,  Wei M ,  Bai Y , et al. Hollow nano- MgF 2 supported catalysts: Highly active and stable in gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane[J]. Applied Catalysis B Environmental, 2018, 238:599-608.
[25]  Korenko M , Šimko, Fratišek, J Mlynáriková, et al. Physico – chemical properties of (MgF2 – CaF2 – (LiF))eut – MgO system as a molten electrolyte for Mg electrowinning[J]. Journal of Molecular Liquids, 2018, 275:535-543.
[26]  Cotter T M ,  Thomas M E ,  Tropf W J . Magnesium Fluoride (MgF2)[J]. handbook of optical constants of solids, 1998.
[27]  Chen H ,  Li C ,  Jie Y . Reaction kinetics of MgF 2 powder in air at high temperature[J]. Corrosion science, 2017, 126:121-126.
[28]  Wang Y ,  Wang S ,  Deng S , et al. Effect of the addition of MgF 2 and NaF on the thermal, optical and magnetic properties of fluoride glasses for sensing applications[J]. Optical Materials, 2017, 72:341-345.
[29] Sharma,  Anuj K . Simulation and analysis of Au-MgF 2 structure in plasmonic sensor in near infrared spectral region[J]. Optics & Laser Technology, 2018, 101:491-498.
[30]  Ab initio calculations of pure and Co+2-doped MgF2 crystals

Related Product

CaF2-Crystal-Halide-Crylink
CaF2
BaF2-Crystal-Halide-Crylink
BaF2
SrF2-Crystal-Halide-Crylink
SrF2

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-21-66566068
Address: Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.