• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Halide Crystal-F/Br/I/Cl Product

Halide Crystal-F/Br/I/Cl Product

Halide Crylink

MENUMENU
  • Fluoride Product
    • CaF2

      BaF2

      MgF2

      LiF

      NaF

    • SrF2

      CeF3

      LiLuF4

      Y:BaF2

    • LiSAF

      Ce:LiSAF

      Cr:LiSAF

    • LiCAF

      Ce:LiCAF

      Cr:LiCAF

    • YLiF4

      Nd:YLF

      Tm:YLF

      Ho:YLF

      Er:YLF

      Pr:YLF

  • Br / I / Cl Product
    • Bromide Crystal

      • KBr 
      • LaBr3
    • Iodide Crystal

      • CsI
      • Eu:SrI2
      • LiI
      • NaI
    • Chloride Crystal

      • KCl
      • LaCl3
      • NaCl
  • Support
    • Service

      Free Test Sample

      Inquiry

      Customized Crystal

      Delivery Time

      Return And Exchange

    • Support

      Sales Support

      Privacy Policy

    • Tech Material

      Reference

    • All crylink support is designed to help customers complete their work better and faster

       

      CRYLINK

  • Company
    • Culture

      History

      Team

      Ecosphere

      Certifacate

    • Hardware

      Production

      Quality test

    • Contact Us

      Sales

  • Contact Us
  • News
You are here: Home / Fluoride Crystal / LiLuF4

LiLuF4

The use of lutetium in place of the more common yttrium ion host is of interest because it leads to a better match of size and mass in the lattice with the heavier rare earths like Yb, Er and Tm. LiLuF4 also melts congruently and has some physical characteristics superior to YLF. The use of Lu as a host ion can also result in subtle spectroscopic differences when compared to analogous Sc, Y, La or Gd based compounds. In general the fluorides probably have not received as much attention as the oxides as host materials. Fluoride crystal LiLuF4 has a negative thermal dependence of refractive index, which compensates the positive thermal expansion coefficients. In addition, the growth of LiLuF4 crystals needs not LiF excess because of its congruent crystallization nature, which would favour crystal growth with higher optical quality.

Download PDF
Ask for a test Sample FREE

Parameter

Material and Specifications
Doping Concentration0.5–3.0%
Orientation Tolerance5ˊ
Dopant Concentration Tolerance0.10%
Parallelism<10〞
Perpendicularity5ˊ
Chamfer0.1mm@45°
Surface Quality10-5 (MIL-O-13830A)
Wavefront Distortion<λ/8@633 nm
Surface Flatnessλ/10 @633 nm
Clear Aperture95%
Diameter2-50.8 mm
Length1-180mm
Physical and Chemical Properties
Crystal StructureScheelite
SymmetryTetragonal
Space GroupI41/a
Lattice Constantsa=5.150, c=10.47 Å
Density (g/cm3)6.19
Melting Point850±3°C
Thermal Conductivity(W/mK@298K)5.0(a), 6.3(c)
Specific Heat(J/gK@300K)0.53
Thermal Expansion(ppm/K@300K)13.6(a), 10.8(c)
Band Gap7.901eV
Optical characteristics
Transmission Range0.22 … 8 µm  
Thermal Coefficient of the Path Length(ppm/K)17.0(E∥a), 13.9(E∥c)@300K
Thermal Coefficient of the Refractive Index (ppm/K)-3.6(E∥a), -6.0(E∥c)@300K
Refractive Indexn=1.47
Nonlinear Refractive Index(10-16cm2/W)1.5±0.5
Spectrum
Feature
Application
Literature
Feature
  • Good transparency from the ultraviolet to the infrared region of the spectrum
  • Low optical nonlinearities
  • Low phonon energies
  • Lower up-conversion loss and laser threshold
  • Good resistance to optical damage
  • Nothermally induced birefringence and output of linearly polarized laser
Application
  • Lamp pumping, diode pumping
  • Conventional sources used for pumping solid-state lasers
Literature
[1]  Gao W ,  Dong J ,  Liu J , et al. Effective tuning of the ratio of red to green emission of Ho3+ ions in single LiLuF4 microparticle via codoping Ce3+ ions[J]. Journal of Alloys and Compounds, 2016, 679:1-8.
[2]  Pytalev D S ,  Klimin S A ,  Popova M N . Optical high-resolution spectroscopic study of Tm 3+ crystal-field levels in LiLuF 4[J]. Journal of Rare Earths, 2009, 27(4):624-626.
[3]  Martincik J ,  Nikl M ,  Ishizu S , et al. VUV-UV-visible luminescence of Nd3+, Er3+ and Tm3+ and energy distribution in LiLuF4 single crystal host[J]. IOP Conference Series Materials Science and Engineering, 2010, 15(1):012089.
[4]  Combes C M ,  Dorenbos P ,  Eijk C , et al. Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals[J]. Journal of Luminescence, 1997, 71(1):65-70.
[5]  Comer S ,  Mcmillen C D ,  Kolis J W . Hydrothermal growth of LiLuFcrystals and new lithium lutetium fluorides LiKLuFand LiNaLuF[J]. Cheminform, 2013, 44(23):90-96.
[6]  Wang G Q ,  Gong X H ,  Lin Y F , et al. Polarized spectral properties of Sm3+:LiLuF4 crystal for visible laser application[J]. Optical Materials, 2014, 37:229-234.
[7]  Yokota Y ,  Kurosawa S ,  Nishimoto K , et al. Growth and luminescent properties of Ce-doped LiF/LiLuF4 eutectic fibers grown by micro-pulling-down method[J]. Journal of the European Ceramic Society, 2014.
[8] G. Stryganyuk and G. Zimmerer and N. Shiran and V. Voronova and V. Nesterkina and A. Gektin and K. Shimamura and E. Villora and F. Jing and T. Shalapska and A. Voloshinovskii. Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV–VUV range[J]. Journal of Luminescence, 2008.
[9]  Min S ,  Zhang Q ,  Liu T , et al. Ab-initio study on the electronic structures of LiLuF4 crystal containing F and F2 color centers[J]. Optical Materials, 2009, 31(8):1118-1122.
[10]  Nurtdinova L ,  Semashko V ,  Guyot Y , et al. Application of photoconductivity measurements to photodynamic processes investigation in LiYF 4:Ce 3+ and LiLuF 4:Ce 3+ crystals[J]. Optical Materials, 2011, 33(10):1530–1534.
[11]  Kaczmarek S M ,  Bensalah A ,  Boulon G . γ-Ray induced color centers in pure and Yb doped LiYF4 and LiLuF4 single crystals[J]. Optical Materials, 2009, 31(11):123-128.
[12]  Voronova V ,  Shiran N ,  Gektin A , et al. Carriers trapping and radiative recombination in Ce, Eu and Pr-doped LiLuF4 crystals[J]. Radiation Measurements, 2007, 42(4-5):823-826.
[13]  Sato H ,  Bensalah A ,  Machida H , et al. Growth and Characterization of 3-in Size Tm, Ho-Codoped LiYF4 and LiLuF4 Single Crystals by the Czochralski Method[J]. Journal of Crystal Growth, 2003, 253(s 1–4):221–229.
[14]  Gao W ,  Dong J ,  Wang Z , et al. Multicolor Upconversion Emission of Lanthanide-doped Single LiYF 4 and LiLuF 4 Microcrystal[J]. Materials Research Bulletin, 2017, 91(JUL.):77-84.
[15]  Zhai X ,  Lei P ,  Zhang P , et al. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes[J]. Biomaterials, 2015.
[16]  Moglia F , S Müller,  Reichert F , et al. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers[J]. Optical Materials, 2015, 42:167-173.
[17]  A A Y ,  A Y F ,  B T Y , et al. Luminescence properties of Nd 3+ doped LiLuF 4 single crystals with different dopant concentrations[J]. Optical Materials, 2013, 35( 11):1890-1892.
[18]  Fukuda K ,  Kawaguchi N ,  Ishizu S , et al. Crystal growth and scintillation characteristics of the Nd 3+ doped LiLuF 4 single crystals[J]. Optical Materials, 2011, 33(6):924-927.
[19]  Bigotta S ,  Tonelli M ,  Cavalli E , et al. Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers[J]. Journal of Luminescence, 2010, 130(1):13-17.
[20]  Wang D ,  Huang S ,  You F , et al. Vacuum ultraviolet spectroscopic properties of Pr~(3+) in MYF_4 (M = Li, Na, and K) and LiLuF_4[J]. Journal of Luminescence, 2007, 122/123(Jan/Apr):p.450-452.
[21] A. F .H. Librantz and L. Gomes and S.L. Baldochi and I.M. Ranieri and G.E. Brito. Luminescence study of the 4f25d configuration of Nd3+ in LiYF4, LiLuF4 and BaY2F8 crystals[J]. Journal of Luminescence, 2006.
[22] N.Yu. Kirikova and M. Kirm and J.C. Krupa and V.N. Makhov and E. Negodin and J.Y. Gesland. Low-temperature high-resolution VUV spectroscopy of Ce3+ doped LiYF4, LiLuF4 and LuF3 crystals[J]. Journal of Luminescence, 2004.
[23]  Kaczmarek S ,  Boulon G ,  Bensalah A . Erratum to:“γ-Ray induced color centers in pure and Yb doped LiYF 4 and LiLuF 4 single crystals”[Optical Materials 28 (2006) 123–128][J].
[24]  Sarantopoulou E ,  Kollia Z ,  AC  Cefalas. Vacuum ultraviolet emission bands of LiLuF4 : Tb3+ crystals in the spectral range from 157 to 200 nm[J]. Microelectronic Engineering, 2002, 61(none):133-138.
[25]  Cornacchia F ,  Palatella L ,  Toncelli A , et al. Temperature dependence of impurity quenched luminescence in Tm3+:LiLuF4[J]. Journal of Physics & Chemistry of Solids, 2002, 63(2):197-202.
[26]  Sarantopoulou E ,  Kollia Z ,  Cefalas A C , et al. On the VUV and UV 4f(7)(S-8)5d -> 4f(8) interconfigurational transitions of Tb3+ ions in LiLuF4 single crystal hosts[J]. Optics Communications, 1998, 156(s 1–3):101-111.
[27]  O. V , Solovyev,  M. E , et al. Modeling and decoding of fine structure of electron-vibrational 5d – 4f luminescence spectra in LiRF 4:Ce 3+ (R=Y, Lu) crystals[J]. Journal of Luminescence An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2018.
[28]  Ranieri I M ,  Shimamura K ,  Nakano K , et al. Crystal growth of Ce : LiLuF 4 for optical applications[J]. Journal of Crystal Growth, 2000, 217(1/2):151-156.
[29] None. Materials index[J].  1977, 15(4):485-486.
[30] Luminescence excitation spectra of LiGdF4 and LiLuF4 intheregion of interconfigurational 4fn–4fn−15d transitions in theGd3+ andLu3+

Related Product

CeF3-Crystal-Halide-Crylink
CeF3
Y-BaF2-Crystal-Halide-Crylink
Y:BaF2
YLiF4-Crystal-Halide-Crylink
YLiF4

Reader Interactions

Comments

  1. Pieterjan Ruysch says

    August 15, 2020 at 09:29

    Dear Halide.

    Are these LiLuF4 available to purchase as crystals for pumping with a blue laser?
    Many articles seem to point out that when LiLuF4 is pumped with a 445nm diode (or something similar) the LiLuF4 crystal could create yellow coherent light at 22% effiency.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Footer

Hot Product

CaF2
MgF2
BaF2

LiSAF

LiCAF
YLiF4

About Us

CryLink has engaged in crystal industry over 30 years; 80% Staff Graduated from Physics & Materials major.
Company & Crystal Growing History
Ecosphere
Team

Contact Us Today

Mail:sales@crylink.com
Phone:+86-21-66566068
Address: Building 7, No.718 Baoqi Road, Baoshan District, Shanghai, China
                 No. 1, Hengyuan Road, Nanjing Economic and Technological Development Zone

Get Connected with us
  • Home
  • History
  • Team
  • Contact Us
  • Reference
  • Fluoride
  • Bromide
  • Iodide
  • Chloride
© 1989-2020 Crylink INC All rights reserved.