LiLuF4
The use of lutetium in place of the more common yttrium ion host is of interest because it leads to a better match of size and mass in the lattice with the heavier rare earths like Yb, Er and Tm. LiLuF4 also melts congruently and has some physical characteristics superior to YLF. The use of Lu as a host ion can also result in subtle spectroscopic differences when compared to analogous Sc, Y, La or Gd based compounds. In general the fluorides probably have not received as much attention as the oxides as host materials. Fluoride crystal LiLuF4 has a negative thermal dependence of refractive index, which compensates the positive thermal expansion coefficients. In addition, the growth of LiLuF4 crystals needs not LiF excess because of its congruent crystallization nature, which would favour crystal growth with higher optical quality.
Parameter
Doping Concentration | 0.5–3.0% |
Orientation Tolerance | 5ˊ |
Dopant Concentration Tolerance | 0.10% |
Parallelism | <10〞 |
Perpendicularity | 5ˊ |
Chamfer | 0.1mm@45° |
Surface Quality | 10-5 (MIL-O-13830A) |
Wavefront Distortion | <λ/8@633 nm |
Surface Flatness | λ/10 @633 nm |
Clear Aperture | 95% |
Diameter | 2-50.8 mm |
Length | 1-180mm |
Crystal Structure | Scheelite |
Symmetry | Tetragonal |
Space Group | I41/a |
Lattice Constants | a=5.150, c=10.47 Å |
Density (g/cm3) | 6.19 |
Melting Point | 850±3°C |
Thermal Conductivity(W/mK@298K) | 5.0(a), 6.3(c) |
Specific Heat(J/gK@300K) | 0.53 |
Thermal Expansion(ppm/K@300K) | 13.6(a), 10.8(c) |
Band Gap | 7.901eV |
Transmission Range | 0.22 … 8 µm |
Thermal Coefficient of the Path Length(ppm/K) | 17.0(E∥a), 13.9(E∥c)@300K |
Thermal Coefficient of the Refractive Index (ppm/K) | -3.6(E∥a), -6.0(E∥c)@300K |
Refractive Index | n=1.47 |
Nonlinear Refractive Index(10-16cm2/W) | 1.5±0.5 |
- Good transparency from the ultraviolet to the infrared region of the spectrum
- Low optical nonlinearities
- Low phonon energies
- Lower up-conversion loss and laser threshold
- Good resistance to optical damage
- Nothermally induced birefringence and output of linearly polarized laser
- Lamp pumping, diode pumping
- Conventional sources used for pumping solid-state lasers
[1] Gao W , Dong J , Liu J , et al. Effective tuning of the ratio of red to green emission of Ho3+ ions in single LiLuF4 microparticle via codoping Ce3+ ions[J]. Journal of Alloys and Compounds, 2016, 679:1-8. |
[2] Pytalev D S , Klimin S A , Popova M N . Optical high-resolution spectroscopic study of Tm 3+ crystal-field levels in LiLuF 4[J]. Journal of Rare Earths, 2009, 27(4):624-626. |
[3] Martincik J , Nikl M , Ishizu S , et al. VUV-UV-visible luminescence of Nd3+, Er3+ and Tm3+ and energy distribution in LiLuF4 single crystal host[J]. IOP Conference Series Materials Science and Engineering, 2010, 15(1):012089. |
[4] Combes C M , Dorenbos P , Eijk C , et al. Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals[J]. Journal of Luminescence, 1997, 71(1):65-70. |
[5] Comer S , Mcmillen C D , Kolis J W . Hydrothermal growth of LiLuFcrystals and new lithium lutetium fluorides LiKLuFand LiNaLuF[J]. Cheminform, 2013, 44(23):90-96. |
[6] Wang G Q , Gong X H , Lin Y F , et al. Polarized spectral properties of Sm3+:LiLuF4 crystal for visible laser application[J]. Optical Materials, 2014, 37:229-234. |
[7] Yokota Y , Kurosawa S , Nishimoto K , et al. Growth and luminescent properties of Ce-doped LiF/LiLuF4 eutectic fibers grown by micro-pulling-down method[J]. Journal of the European Ceramic Society, 2014. |
[8] G. Stryganyuk and G. Zimmerer and N. Shiran and V. Voronova and V. Nesterkina and A. Gektin and K. Shimamura and E. Villora and F. Jing and T. Shalapska and A. Voloshinovskii. Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV–VUV range[J]. Journal of Luminescence, 2008. |
[9] Min S , Zhang Q , Liu T , et al. Ab-initio study on the electronic structures of LiLuF4 crystal containing F and F2 color centers[J]. Optical Materials, 2009, 31(8):1118-1122. |
[10] Nurtdinova L , Semashko V , Guyot Y , et al. Application of photoconductivity measurements to photodynamic processes investigation in LiYF 4:Ce 3+ and LiLuF 4:Ce 3+ crystals[J]. Optical Materials, 2011, 33(10):1530–1534. |
[11] Kaczmarek S M , Bensalah A , Boulon G . γ-Ray induced color centers in pure and Yb doped LiYF4 and LiLuF4 single crystals[J]. Optical Materials, 2009, 31(11):123-128. |
[12] Voronova V , Shiran N , Gektin A , et al. Carriers trapping and radiative recombination in Ce, Eu and Pr-doped LiLuF4 crystals[J]. Radiation Measurements, 2007, 42(4-5):823-826. |
[13] Sato H , Bensalah A , Machida H , et al. Growth and Characterization of 3-in Size Tm, Ho-Codoped LiYF4 and LiLuF4 Single Crystals by the Czochralski Method[J]. Journal of Crystal Growth, 2003, 253(s 1–4):221–229. |
[14] Gao W , Dong J , Wang Z , et al. Multicolor Upconversion Emission of Lanthanide-doped Single LiYF 4 and LiLuF 4 Microcrystal[J]. Materials Research Bulletin, 2017, 91(JUL.):77-84. |
[15] Zhai X , Lei P , Zhang P , et al. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes[J]. Biomaterials, 2015. |
[16] Moglia F , S Müller, Reichert F , et al. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers[J]. Optical Materials, 2015, 42:167-173. |
[17] A A Y , A Y F , B T Y , et al. Luminescence properties of Nd 3+ doped LiLuF 4 single crystals with different dopant concentrations[J]. Optical Materials, 2013, 35( 11):1890-1892. |
[18] Fukuda K , Kawaguchi N , Ishizu S , et al. Crystal growth and scintillation characteristics of the Nd 3+ doped LiLuF 4 single crystals[J]. Optical Materials, 2011, 33(6):924-927. |
[19] Bigotta S , Tonelli M , Cavalli E , et al. Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers[J]. Journal of Luminescence, 2010, 130(1):13-17. |
[20] Wang D , Huang S , You F , et al. Vacuum ultraviolet spectroscopic properties of Pr~(3+) in MYF_4 (M = Li, Na, and K) and LiLuF_4[J]. Journal of Luminescence, 2007, 122/123(Jan/Apr):p.450-452. |
[21] A. F .H. Librantz and L. Gomes and S.L. Baldochi and I.M. Ranieri and G.E. Brito. Luminescence study of the 4f25d configuration of Nd3+ in LiYF4, LiLuF4 and BaY2F8 crystals[J]. Journal of Luminescence, 2006. |
[22] N.Yu. Kirikova and M. Kirm and J.C. Krupa and V.N. Makhov and E. Negodin and J.Y. Gesland. Low-temperature high-resolution VUV spectroscopy of Ce3+ doped LiYF4, LiLuF4 and LuF3 crystals[J]. Journal of Luminescence, 2004. |
[23] Kaczmarek S , Boulon G , Bensalah A . Erratum to:“γ-Ray induced color centers in pure and Yb doped LiYF 4 and LiLuF 4 single crystals”[Optical Materials 28 (2006) 123–128][J]. |
[24] Sarantopoulou E , Kollia Z , AC Cefalas. Vacuum ultraviolet emission bands of LiLuF4 : Tb3+ crystals in the spectral range from 157 to 200 nm[J]. Microelectronic Engineering, 2002, 61(none):133-138. |
[25] Cornacchia F , Palatella L , Toncelli A , et al. Temperature dependence of impurity quenched luminescence in Tm3+:LiLuF4[J]. Journal of Physics & Chemistry of Solids, 2002, 63(2):197-202. |
[26] Sarantopoulou E , Kollia Z , Cefalas A C , et al. On the VUV and UV 4f(7)(S-8)5d -> 4f(8) interconfigurational transitions of Tb3+ ions in LiLuF4 single crystal hosts[J]. Optics Communications, 1998, 156(s 1–3):101-111. |
[27] O. V , Solovyev, M. E , et al. Modeling and decoding of fine structure of electron-vibrational 5d – 4f luminescence spectra in LiRF 4:Ce 3+ (R=Y, Lu) crystals[J]. Journal of Luminescence An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2018. |
[28] Ranieri I M , Shimamura K , Nakano K , et al. Crystal growth of Ce : LiLuF 4 for optical applications[J]. Journal of Crystal Growth, 2000, 217(1/2):151-156. |
[29] None. Materials index[J]. 1977, 15(4):485-486. |
[30] Luminescence excitation spectra of LiGdF4 and LiLuF4 intheregion of interconfigurational 4fn–4fn−15d transitions in theGd3+ andLu3+ |
Pieterjan Ruysch says
Dear Halide.
Are these LiLuF4 available to purchase as crystals for pumping with a blue laser?
Many articles seem to point out that when LiLuF4 is pumped with a 445nm diode (or something similar) the LiLuF4 crystal could create yellow coherent light at 22% effiency.